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In papers Il.2 ] there was given the formulation and the solution of the 
problem of the stability of relative rotational motion of a symmetrical 
rigid body with a cavity, partially or completely filled with an ideal 
liquid, with respect to parameters, characterizing the motion of the 
rigid body and the projections of the moment of momentum of the liquid. 

In the present paper the problem of the stability of motion of an 
asymmetric heavy rigid body with one point fixed is solved in an 
analogous formulation, The body has a cavity, completely filled with a 
viscous liquid. Using the second method of Liapunov sufficient condi- 
tions are found for stability of rotation with respect to the vertical 
of the rigid body with a liquid. 

1. Let OPT 5 be the fixed rectangular system of coordinates, having 
their origin at the fixed point, with the axis 04 directed vertically 
upward. We introduce also a moving rectangular system of coordinates 
Oxyz, whose axes coincide with the principal axes of inertia of the 
rigid body at its fixed point 0, The principal moments of inertia of the 
body with respect to the axes x, y, z are designated by A,, B,, C,, re- 
spectively. Let Ml be the mass of the body, x1, yl, z1 the coordinates 
of its center of mass. 

We assune that the body possesses a cavity of arbitrary shape; for 
the sake of simplicity we assume that the axes x, y, z are principal 
axes of inertia of the volume of the cavity. Let the cavity be filled 
completely by a homogeneous, incompressible, heavy viscous liquid. 

Let M2 designate the mass of the fluid, x2, yz, z2 the coordinates of 
its center of mass, p the density, A,, L$, C, the moments of inertia of 
the fluid with respect to the axes X, y, z, p the coefficient of visco- 
sity, v = ,utp the kinematic coefficient of viscosity. 
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It is assumed that no external forces are acting on the rigid body 
and the liquid, with the exception of the forces of gravity and the re- 
action at the fixed point. 

The rigid body and the liquid-filled cavity will be regarded as a 
single mechanical system, for the derivation of the equations of motion 
of which we shall use the theorem of angular ~ment~. 'Ibe angular 
momentun of the system with respect to the fixed point is compounded 
geometrically from the angular momentum of the body G, and the angular 
momentum of the liquid G2, 

If p, q, r designate the projections on the moving axes of the vector 
of instantaneous angular velocity of the body, then the projections of 

the vector G, on these axes will be equal to A,p, B,q, Clr, respectively. 

Let us designate by vz, vY, vz the projections on the meving axes of 
the velocity of the liquid in its motion with respect to the fixed axes 
O[q<, If we introduce also the vector of the relative velocity of the 
liquid in its motion with respect to the axes Oryz, &rose projections on 
these axes are designated by u, v, W, then the following formulas will 
be valid: 

v x= qz - ry -/- u, v, = rx -pi-~, =%=py-w-4-w (1.1) 

The projections of the moving axes of the vector G, which represents 
the angular momentum of the fluid are 

G2.T = p (Yh - 3/)~~, c G, = P \ ( zv, - zu,) dr , 
. 

Gzz = P \ (w, 
t t 7 

where T designates the volume of the liquid-filled cavity. 

Using Formulas (1.1) we easily obtain 

G 2x = A2p + gl, Gztl = Bzq + gz, G,, = C2r + g3 

where 

- YVJ dr 

(W 

gl = p \ Qiw - 4 d%, g:! = p\(zu - xw) dq gs = p (xv - yu) dT 
I T t T 

designate the projections on the moving axes of the relative angular- 
~ment~ vector of the liquid. 

The theorem of angular momentum of the system expressed in texms of 
projections on moving axes leads to the following equations of motion of 
the rigid body with a liquid-filled cavity: 
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Here 

A = A1 + dz, I3 = BI + B2, c = Cl f Ca 

designate the moments of inertia of the system with respect to the moving 

axes, M = M, + M, is the mass of the system, g is the acceleration of 

gravity, x0, yo, z. are the coordinates of the center of gravity of the 

system, where 

Mm = M1x1 + M222, Myo = Mlyl + M2y2, Ma = Mm + ~422.2 

yl, yt, y3 designate the direction cosines of the axis O< with respect 

to moving axes which satisfy Poisson’s equation 

dn 
$t ='72-9rst 

dya yjj- = P7s - Tl, 
@a 

dt = 971 -PpT2 (1.4) 

To obtain the complete system of equations of motion, Equations 
(1.31, (1.4) must be supplemented by the Navier-Stokes equations for the 

motion of a viscous incompressible heavy liquid, with respect to moving 

axes, together with the incompressibility equation 

$- @ + 9= --Y)+q(~+PY-9x)--r~+rx-P~) 

= -gyl- +$+vAu 

$ (v + rx - ps) + r 0.~ + 92 - ry) - P (w + PY - 94 

= - gy, - $ ?$ + vAv (1.5) 

&w+PY - 94 + P (v + rx - P4 - 9 (u + 92 - rY) 

- - l?rs - j- al i J!E + VAW 

g+ $+$=o ( A=s+$+$) 

Here p1 designates the hydrodynamic pressure. 

The solutions of Equations (1.5) must satisfy at the walls S the 
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boundary conditions 

while in the case 

relative velocity 

We pass now to 

in the sequel for 

u=v=w=o on s (l-6) 

of an ideal liquid only the normal component of the 
of the liquid should be equal to zero at S. 

the derivation of certain relations which we will need 

the solution of the stability problem. 

We first multiply Equations (1.3) by p, q, r, respectively, and add 

them; the first three equations (1.5) are multiplied by u, II, w, respect- 
ively, and are added; the result is multiplied by p dr and integrated over 

the volume r of the cavity and then added to the first sum. 

Taking into account the incompressibility equation and the boundary 

conditions (1.6) for the liquid, as well as Poisson’s Equations (1.4), 

we obtain after simple manipulation the following equation: 

(1.7) 

where T = T, + T, designates the kinetic energy of the system, the 

kinetic energies of the body and the liquid being, respectively, 

2T1 = Alp2 + Blq2 + Clr2 

2T2 = A2p2 -/- Bzq” + Czr2 -I- p \ (u2 + v2 + w”) dz + 
+ 

and 

+ 2~ 1 [u (42 - c/) + Q (~5 - P) + w (py - qx)l dr 
7 

(1.8) 

V = Mg (Tocoyl+ yoyz + zap) (1.91 

designating the potential energy of the gravity force. 

From Equation (1.7) it follows that 

T+V\<To+Vo (1.10) 

where the subscript (0) designates the initial value of the correspond- 

ing quantity. 

For an ideal liquid ~1 = 0 and in relation (1.10) the equality sign 

will apply. 
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Let us now multiply Equations (1.3) byyr, yt, yJ, respectively, add 

them, and obtain the integral of the areas, taking into account Equations 

(1.4) 

(Ap + g1) Yl + (Bq + g2) y2 + (Cr + g3) Y3 = COIL% (1.11) 

It is also obvious that Equations (1.4) admit a first integral 

Y12 + Y22 + Ys2 = 1 (1.12) 

2. We shall now consider the case when the center of gravity of the 

system is located on the principal axis of inertia Oz of the rigid body 

and the liquid, i.e. when x0 = y,, = 0. 

Equations (1.3) through (1.5) then admit the particular solution 

p=q=o, r = 0, G,, = G2V = 0, G,, = G = C20 (2.1) 

y1 = ya = 0, ys = 1, u=v=w=O 

which describes a uniform rotation of the rigid body with a liquid-filled 

cavity about the vertical. 

Let us study the stability of the unperturbed motion (2.1) with 

respect to the projections of the instantaneous angular velocity of the 

body P> q, r, the projections of the angular momentun vector of the 

liquid G,%, Gzy, GzZ and the direction cosines of the vertical yr, yi, yS. 

In the disturbed motion we set 

r=(J)+E, G2r = G + q, y3 = 1 + C 

while the remaining variables retain the earlier notation. If these 

values for the variables are substituted into bations (l.3) through 

(1.5), we obtain the equations of disturbed motion; we will not write 

them down explicitly. 

Before passing to the solution of the stability problem, we transform 

the kinetic energy expression of the liquid. bring motion of the system 

the quantities p, q, r, g,, g2, g, will represent some functions of time. 

In place of Gzx, Gzy, GzZ we introduce new independent functions of 

time or, a+, a3 defined by the equations 

01 = L G2%, 
A2 

o2 = LG,,, 
B2 

w3=lGar 
c2 

(2.2) 

If the velocities of the liquid vz, v 
w' 

, 
oi(t)(i = 1, 2, 3) will also be given. 

vz are known, the functions 

e also consider the quantities 
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ui(t, x, y, 21, defining them by the formulas 

ui = v, + way - wzz, V, = zly + wIz - oax, v, = v, + 0,~ - WIG (2.3) 

It is then easily seen that on the strength of E&rations (2.2) 

? s 
(yu3 - ma> dz = 

4 
ZUI - zvs) dz = p (ma - yv~) dz = 0 (2.4) 

s + T 7 
Conversely, if o.(t), u.(t, x, y, z)(i = 1, 2, 3) are known, then 

Formulas (2.3) permit the determination of uX, v,,, ul. 

Using Formulas (2.3) and (2.41, the expression for the kinetic energy 
of the liquid may be represented now in the form 

2*“2$_+5!2+Ag_ + P \ @I’ + ~2 + vs2) ds (2.5) 
+ 

From here, among other things, there imnediately follows the inequal- 
ity 

2TzS > G2x2 -I- G2u2 -I- G22=, S = max (AZ, B2, C2) 

established by Liapunov and used in papers [ 1,2 I. 

Let us note that the functions wi (t 1, introduced by Formulas (2;2), 
may be interpreted as projections on the axes x, y, z of the instantane- 
ous angular velocity of such a rigid body with a fixed point 0, which 
possesses the same shape as the liquid, consists of the same material 
particles as the liquid, and whose angular-momentum vector is geometric- 
ally equal to the angular-momentum vector of the liquid. lhe functions 

‘iftS z# YI zl may then be treated as the projections on the moving axes 
of the velocity vector of the liquid in its motion with respect to the 
rigid body [ 3 1. 

Passing to the study of stability of the unperturbed motion (2.11, 
we note that there 

01 = 02 = 0, w3 = 0, VI = 212 = v2 = 0 

For the perturbed motion of the system, on the strength of Equation 
(1.71, we will have 

where 

dV~/dt<O (2.6) 
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vl ES Alp2 + Blq2 + CI (2oE + E") +$ G2x2 + +2v2 + 

+ -& (y2 + 2C20q) + 2Mgz0T. + e 5 (2~1~ + vs2 + v22) dr (2.7) 
7 

It is ds easily seen that the equations of perturbed motion admit 

the first integrals 

V2 = (Alp + G&y1 + (Blq + G,,) y2 + '% + r + cl (0 + 8 c + 

+ (C20 + q)C = c0r.d (2.8) 

v3 = y12 + y22 + c2 + 2c = 0 

Let us consider the function 

v = VI - 2wv2 + (Cd - Mgm) v3 + gpv33 

cAlp2 - 20 (Alp + G&l ++ G2x2 + (Co2 - M!W') Y12 + 

,+ Blq2 - 20 (Blq + G2Y) 72 + $2,' + (cw2 - ~@dT22f 

+ ClE2 - 20 (Cli + Tj)e, t&q2 + (Cm2 - &PO + PC) c2 + 

+ $pc (y12 + y22 + C") + p \(U12 4 v22 + v32) l-h (2.9) 

5 

where the constant p > Mgza. 

In accordance with Sylvester's criterion of a positive-definite func- 

tion V, it is necessary and sufficient to satisfy the following inequal- 

ities: 

(C - A) w2 - Mgzo > 0, (C - B) w2 - Mgzo > 0 

If one assumes without loss of generality that A > B, the second of 

these conditions is obviously satisfied if the first is satisfied: 

(C - A) o2 -- Mgzo > 0 (2.40) 

'Ihe derivative of the function V, taken for the equations of perturbed 

motion, will be nonpositive as a consequence of inequality (2.6). 

Hence in condition (2.10) the function V satisfies all conditions of 
Liapunov's stability theorem, which p roves the stability of the unper- 

turbed motion (2.10) of a rigid body with a cavity, filled with a 

viscous liquid, with respect to the quantities p, q, F, Gzz, G2,,, GzZ, 

Ylt Y2) Y3' as well as vl, u2, V3. 
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Thus it is proved that condition (2.10) is a sufficient stability con- 

dition of unperturbed motion (2.1) of a rigid body with a cavity filled 

with a viscous liquid. 

Let us note that condition (2.10) is of the same form as the stabil- 

ity condition for rotation about the vertical of a heavy rigid body of 

weight Mg with moments of inertia A = A, + A, and C = C, + C, 

For a single elongated rigid body, for which A, > C,, a condition of 

the form (2.10) is not satisfied. However, for a body with a cavity it 

may be satisfied for a sufficiently large angular velocity o, if the 

shape of the cavity is chosen in such a manner that the inequalities are 

satisfied: 

C2 >A2, CI + C2 - Al - A2 > 0 

It is of interest to point out that the stability condition (2.10) 

does not depend at all on the viscosity of the liquid and is thus valid 

also for an ideal liquid. 

In the case of a nonviscous liquid, and if at the initial instant the 

motion is irrotational or if the liquid is at rest, then, in accordance 

with Lagrange's theorem, the motion of the liquid will remain irrota- 

tional at all times. 

'lhe kinetic energy of the liquid will then equal 

2T2 = A2’p2 + Bz’q2 + Czar2 

where AZ*, B2*, C,* designate the moments of inertia of an equivalent 

rigid body in the sense of Zhukovskii 14 1, whereby 

A2 > A2*, B2 > B2*, cz > C2’ 

In the case of the rotational motion of an ideal liquid, the stabil- 

ity condition of an irrotational motion (2.1) will thus be of the form 

(Cl + c2* - A, - A,*) d - Mgz, > 0 (2.14) 

We note that if the cavity is axially symnetric with respect to the 

axis Oz, then C,* = 0, and if condition (2.11) is satisfied, then con- 

dition (2.10) will also be satisfied provided the following inequality 

holds: 

C2 > A2 - A2’ 

'Ihe stability of rotation of a rigid body with a cavity filled com- 

pletely with an ideal liquid which is in a state of irrotational motion 



The ctability of rotation of a top 911 

was first studied by Chetaev E5 I. 

In tbe case of an axially synmetric cavity Chetaev obtained the 
necessary and sufficient stability condition of unperturbed motion with 
respect to the variables p, q, r, y1 y2 y3 in the form 

CrW - 4 (A, + Aa*) Mgzo > 0 

‘Ibe problem of the stability of a symmetric top with an axially sym- 
metric cavity filled completely with an ideal liquid which is in a state 
of vortex motion was studied by Sobolev in linear formulation [6 I. 

In particular, Sobolev proved that if the following inequality is 
valid: 

L = (Cl + Cz - A1 - AZ) - q.0 (2.12) 

then the operator eiBt, characterizing the perturbed motion of the 
system, is bounded. 

It is obvious that condition (2.12) on the boundedness of this operator 
coincides with the stability condition of unperturbed motion (2.1) with 

respect to p, 9, rr Gzx, GzY, Gzr, yl, y2, y3* 

We note finally that in the case of inertial motion of a rigid body 
with a liquid ahout the center of gravity of the system lz = 0) condition 
(2.1) takes on the form 

C-A>0 

Hence, the permanent rotations of a rigid body with a liquid-filled 
cavity ahout the small axis of the central ellipsoid of inertia of the 

system are stable. 

This result may be considered as a certain supplement to the well- 
known theorem of Zbukovskii [4 1 on the motion of a rigid body conplet- 
ely filled with a viscous liquid. 
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